IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Raffaele Vallauri STMicroelectronics

"ARGON": a new Epoxy Technology for probing POA power devices

June 8 to 11, 2008 San Diego, CA USA

Authors

R. Vallauri, M. Gervasoni, L. Cecchetto, L. Zullino

– STMicroelectronics

♦ R. Vettori , S. Lazzari, C. Albini

– Technoprobe S.p.A.

Table of contents

Problem description Methodology followed Probing Process DOE Needle geometries and materials Electrical and mechanical needle characterization Probe Modeling Production results New developments

Problem description

 The product involved is a very critic mass production Power device

Problem:

- A too narrow probing process window
- Yield and productivity losses due to contact issues
- Reliability issues due to damages induced in the pad structure

Main process criticalities:

- ♦ 4M1T POA pad structure
- Electrical Contact stability
- Current carrying capability (up to 1.2 1.4 A for up to 10 ms on a single needle)
- ◆ Test T: +70°C
- Pad opening: 81 x 96 μm

4M1T POA Pad Structure

 The last two metals (M4 and M3) are short-circuited by design

Probe Card Layout

Starting production data

Electrica	STD	
	Final EWS Yield:	84.4%
	ON-Line Retest %:	19.5%
	ON-line Gain %:	5.6%

- Overdrive (OD) distribution
 - ◆ Average working OD: 80 µm in DOUBLE TD
 - Working OD STDEV: 15.4 μm
 - See next slide for details

Pad structure integrity

- High probability of catastrophic dielectric cracks
- High Final Test losses (Shorts)
- Need of extra screenings @ Final Test Level

San Diego, CA - USA

Starting OD distribution

San Diego, CA - USA

Pad integrity analysis – STD PC (W)

 Physical analysis (Delayering + visual inspection) on probed pad revealed in some cases cracks @ IMD2 level:

75 um × 6tds

100 um × 4tds

EWS Process margins were really limited with STD Probe Card

San Diego, CA - USA

IEEE SW Test Workshop

June 9, 2008

9

PC developments: probing process DOE

Validation tests & analysis

Pro	G	РС Туре	Pad Integrity	Current capability	Yield
be Mo	sometries ccc	STD	No Good	Good	No Good
delling		H9-like	Slightly better	Good	NA
J Validation		Argon W	Good	No Good	NA
		Argon BC	Good	Good	Good

Probe Card development: geometries

- Starting point: standard, (WRNP 7-8, 2.5 ± 0.5 g/mils, tip dia 25 μm):
 - Contact and dielectrics integrity issues
- 1st evolution: H9-like (WRNP 5-6, lower force, tip dia std, tip L > STD):
 - Still contact issues, some more margins in terms of dielectrics integrity
- 2nd evolution: Argon W (WRNP 5-6, new needle geom, force = H9-like, controlled lateral force, tip dia std, tip L > H9-Like):
 - Better contact, more safe margins BUT needle burning even increasing the tip dia (by lapping action)
- 3rd evolution: Argon BC (BC 7-8, vertical and lateral force = Argon W, tip dia 30 µm, tip L = Argon W):
 Good contact, safe margins, no more burning failures. Full release to production (see next slides)

San Diego, CA - USA

IEEE SW Test Workshop

11

Epoxy CCC: methodology

- Both W(Re) and Cu(Be) needles were characterized in Current Carrying Capacity (CCC) with respect wire diameter, tip diameter and taper
- "Keep It Simple" Method: I_{DC} max is the current that causes the tip discoloration after 1 h of DC powering

San Diego, CA - USA

Epoxy CCC - Findings

No contact force decrease during needle degradation

Needles CCC depends on:

- Needles material: as expected Cu(Be) carries more current than W(Re)
- Tip diameter: larger tips carry more current
- Taper: slimmer tapers carry less current but allow POA probing

San Diego, CA - USA

Epoxy CCC - Findings

Typical Reference values for I_{DC} max / Tip area (mA/µm²):

	Standard	H9 - like	Argon
W(Re)	1,7 ÷ 4,0	1,4 ÷ 2,5	1,3 ÷ 2,0
Cu(Be)	-	-	1,9 ÷ 3,0

San Diego, CA - USA

Probe Modeling validation: Std vs. New needles

Displacement in X – direction (overdrive 60µm)

- Good agreement at simulation level in both conditions
- Shorter probe mark length using new needles
 - See Luca Cecchetto presentation for additional info (SWTW 08)

San Diego, CA - USA

Production results

Electrical data:			
 Electrical data:	STD	Argon BC	
Final EWS Yield:	84.4%	91.6%	+7.2%
ON-Line Retest %:	19.5%	10.7%	-8.8%
ON-line Gain %:	5.6%	4,5%	-1.1%

Overdrive distribution

Average working OD: 70 μm in SINGLE TD

- (it was 80 µm in DOUBLE TD)
- Working OD STDEV: 10 μm (it was 15.4 μm)
- See next slide for details

Pad structure integrity
 Process window definitely increased

Present OD distribution

San Diego, CA - USA

Pad integrity analysis

Argon W PC 25 µm tip dia – No soft touch

OD (µm) # TD	50	75	100
4	PASS	PASS	PASS
6	PASS	PASS	PASS
8	PASS	FAIL	FAIL

 Cross sections confirmed that also in case of 100 µm OD × 8 tds NO IMD2, catastrophic cracks were observed

Pad Area Damaged

 Following table shows the data of damaged pad area in different EWS conditions

 Argon BC, even if tip diameter is 30 µm instead of 25 µm, is behaving better than STD PC due to its controlled scrub action

TDS	OD	Scrub Are	b Area [μm ^{^2}] % of SQBPO Damaged		DELTA	
[#]	[µm]	STD WR	Argon BC	STD WR	Argon PC	
4	60	945	660	14,4%	10,1%	-4,3%
4	75	1124	792	17,1%	12,1%	-5,1%
4	100	1295	854	19,7%	13,0%	-6,7%
6	60	989	797	15,1%	12,1%	-2,9%
6	75	1094	834	16,7%	12,7%	-4,0%
6	100	1296	1094	19,8%	16,7%	-3,1%
8	60	967	742	14,7%	11,3%	-3,4%
8	75	1264	927	19,3%	14,1%	-5,1%
8	100	1334	1111	20,3%	16,9%	-3,4%

Legenda: TDS = # of touch-downs; OD = overdrive; SQBPO = Square Bond Pad Opening (= 81 X 81 μ m² in this case)

San Diego, CA - USA

 \diamond

San Diego, CA - USA

IEEE SW Test Workshop

FLD

Conclusions

 Working as an effective Team with Technology R&D and within a win to win relationship frame with the supplier we succeeded in

Developing a new Epoxy PC technology called ARGON

- Releasing a complete new probing process to production
- Working with the right methodology

The delivered probing process is very satisfactory:

- Electrical yield and retest rates significantly improved
- Average OD have been reduced
- OD distribution is now under control

 New developments: Argon validation on BCD8 POA devices (Al and Thick Cu options)

New developments: BCD8 – POA – Thick Cu

Argon PC

- OD value: 60 and 75 μm
- ♦ # of tds: 6,8
- ◆ Test T: up to +140°C

 No die Cracks
 No Cu exposure
 Good Yield on both single (Tip dia 25 µm) and double pads (Tip dia 35 µm)

San Diego, CA - USA

IEEE SW Test Workshop

22

Acknowledgements

♦ A special thanks to:

ST Technology R&D Agrate
 Technoprobe Team
 ST Agrate EWS Engineering Team

San Diego, CA - USA